
Parade Documentation
Release 0.1.20.3

He Bai

Apr 24, 2020

First steps

1 Installation 3
1.1 Requirements . 3
1.2 Install with pip . 3

2 Tutorial 5
2.1 Initialize Workspace . 5
2.2 Compose Tasks . 8
2.3 Build the DAG-workflow . 15

3 Indices and tables 19

i

ii

Parade Documentation, Release 0.1.20.3

Version: 0.1.20.3

Parade is a simple and out-of-box toolkit to handle data work such as ETL, data analysis, BI reports, etc, and enable
fast and flexible integration mechanism with applications. It can be used for a wide range of purposes, from composing
& scheduling data workflow to providing unified web-APIs of data query.

This documentation contains everything you need to know about Parade.

First steps 1

Parade Documentation, Release 0.1.20.3

2 First steps

CHAPTER 1

Installation

1.1 Requirements

• Python 3.4+

• Works on Linux, Windows, Mac OSX, BSD

1.2 Install with pip

The quick way:

> pip install parade

3

Parade Documentation, Release 0.1.20.3

4 Chapter 1. Installation

CHAPTER 2

Tutorial

After installation, a command line tool parade is placed in $PATH. Have a glance at the usage output:

> parade -h

usage: parade [-h] {search,init} ...

The CLI of parade engine.

positional arguments:
{search,init}
search search a contrib component
init init a workspace to work with

optional arguments:
-h, --help show this help message and exit

Until now, you can do nearly nothing but to initialize a workspace to place your task and other stuff. We leave the
search command later . . .

2.1 Initialize Workspace

In this tutorials, we’ll compose a series of ETL tasks, compose them into a DAG workflow and schedule the flow with
a third-party scheduler (e.g, Azkaban). Type following command to Initialize the workspace named example:

> parade init example

New Parade workspace 'example', using template directory 'site-packages/parade/
→˓template/workspace', created in:

/$CMD/example

You can start your first task with:

(continues on next page)

5

Parade Documentation, Release 0.1.20.3

(continued from previous page)

cd example
parade gentask your_task -t etl

Enter the workspace directory, and re-check usage again:

> parade -h

usage: parade [-h] {feature,task,flow,init,server,convert,notebook} ...

The CLI of parade engine.

positional arguments:
{feature,task,flow,init,server,convert,notebook}
feature feature-related sub commands
task task-related sub commands
flow flow-related sub commands
init init a workspace to work with
server start a parade api server
convert convert a source table to a target table
notebook start a jupyter notebook server

optional arguments:
-h, --help show this help message and exit

You can find much more sub-commands available now. We come to the details of these sub-commands later. At this
moment we have a look at the directory structure.

> tree

.
__init__.py
__pycache__
example

__init__.py
...
contrib

...
connection

__init__.py
...

flowrunner
__init__.py
...

flowstore
__init__.py
...

notify
__init__.py
...

task
__init__.py
...

example-default-1.0.yml
jupyter

...

...

(continues on next page)

6 Chapter 2. Tutorial

Parade Documentation, Release 0.1.20.3

(continued from previous page)

parade.bootstrap.yml

29 directories, 19 files

At top there are a package named example (as we specified) and two yaml files. The package has two sub-packages:

• contrib contains user defined components, such as connection drivers, task dagstores, etc.

• task holds all the data tasks to execute or schedule.

The yaml file parade.bootstrap.yml is just a pointer to the configuration repo for this workspace. Its content is as
follows:

workspace:
name: example

config:
name: example
driver: yaml
profile: default
version: 1.0
uri: "{name}-{profile}-{version}.yml"

The first section contains some basic information about the workspace. In the second section, we use a configuration
repo based on default YAML driver, which is also a yaml file with formatted name {name}-{profile}-{version}.yml
(You can implement your own configuration repo and specify it as config.driver in parade.bootstrap.yml). Providing
the configuration name, example, profile, default, and version, 1.0, the file configuration repo file is example-default-
1.0.yml.

connection:
name of the connection
rdb-conn:
driver: rdb
protocol: postgresql
host: 127.0.0.1
port: 5432
user: nameit
password: changeme
db: yourdb
uri: postgresql://nameit:changeme@127.0.0.1:5432/yourdb

elastic-conn:
driver: elastic
protocol: http
host: 127.0.0.1
port: 9200
user: elastic
password: changeme
db: example
uri: http://elastic:changeme@127.0.0.1:9200/

checkpoint:
connection: rdb-conn

flowstore:
driver: 'azkaban'
host: "http://127.0.0.1:8081"
username: azkaban
password: azkaban
project: TestProject
notifymail: "yourmail@yourdomain.com"
cmd: "parade exec {task}"

2.1. Initialize Workspace 7

Parade Documentation, Release 0.1.20.3

The file defines some third-party data connections and DAG-workflow stores for our tasks. We have two connections
here: one names rdb-conn, connecting to the postgresql database yourdb with driver rdb, the other names elastic-conn,
is a document database based by a elasticsearch server.

In the flowstore section, we use the famous job scheduler of LinkedIn, Azkaban, to schedule our data workflow. You
may already find that Parade can be easily integrated with other third-party components with different drivers. This
is benefited from its easy & unified plugin based architecture, which we’ll present later.

The layout of example workspace so far are:

• Core package holds our data tasks and some contributed components

• The top level contains configuration files

Parade expects you keeps your workspace nice and tidy. There’s a place for everything, and everything is in its place.

2.2 Compose Tasks

In this tutorial, we will load the IMDB 5000 Movie Dataset published on Kaggle into our database, and process some
further analysis on this dataset, then re-store the analysis result into another table. After that we try to build a DAG
workflow with these tasks and schedule them as a whole.

2.2.1 Compose a ETL task

For sake of convenience, we’ve placed the dataset as a unzipped CSV file in our github repo, check it here. In the first
task, we will load this dataset as a table into our postgresql/mysql database.

Use gentask subcommand of Parade to generate the skeleton for this ETL task.

> parade task create movie_data -t etl

Open the skeleton python file example/task/movie_data.py, you’ll find lots of attributes as @property functions you
can override to customize the task. We only reserve the required attributes to make the source tidy:

-*- coding:utf-8 -*-
from parade.core.task import ETLTask

class MovieData(ETLTask):

@property
def target_conn(self):

"""
the target connection to write the result
:return:
"""
raise NotImplementedError("The target is required")

def execute_internal(self, context, **kwargs):
"""
the internal execution process to be implemented
:param context:
:param kwargs:
:return:
"""
raise NotImplementedError

8 Chapter 2. Tutorial

https://azkaban.github.io/
https://www.kaggle.com/deepmatrix/imdb-5000-movie-dataset
https://www.kaggle.com/
https://raw.githubusercontent.com/bailaohe/parade/master/assets/movie_metadata.csv

Parade Documentation, Release 0.1.20.3

The first @property function target_conn is used to specify the connection where we store our ETL data. We can
simply set it to the connection key in our configuration, like rdb-conn.

The other function execute_internal is the core logic of this task. We simply load the raw csv dataset, do some
projection & filter operation on it, and then store the result. Parade can handle Pandas Dataframe (and dict) by default.
So we can use pandas to process the data and return the result dataframe directly. The edited task is:

-*- coding:utf-8 -*-
from parade.core.task import ETLTask

class MovieData(ETLTask):

@property
def target_conn(self):

"""
the target connection to write the result
:return:
"""
return 'rdb-conn'

def execute_internal(self, context, **kwargs):
"""
the internal execution process to be implemented
:param context:
:param kwargs:
:return:
"""
df = pd.read_csv('https://raw.githubusercontent.com/bailaohe/parade/master/

→˓assets/movie_metadata.csv')

Process projection on the dataset to get our interested attributes
df = df[['movie_title', 'genres', 'title_year', 'content_rating', 'budget',

→˓'num_voted_users', 'imdb_score']]

Filter out records with *NAN* title_year and budget
df = df[pd.notnull(df['title_year'])]
df = df[df['budget'] > 0]

Extract the genres ROOT
df['genres_root'] = df['genres'].apply(lambda g: g.split('|')[0])

return df

2.2.2 Execute the ETL task

Use the following Parade command to execute the single task movie_data.

> parade task exec movie_data

2017-05-24 16:37:14,913 program_name DEBUG [11758] [exec.py:20]: prepare to execute
→˓tasks ['movie_data']
2017-05-24 16:37:14,914 program_name INFO [11758] [exec.py:27]: single task movie_
→˓data provided, ignore its dependencies
2017-05-24 16:37:35,634 program_name WARNING [11758] [rdb.py:72]: Detect columns with
→˓float types ['title_year', 'budget', 'imdb_score'], you better check if this is
→˓caused by NAN-integer column issue of pandas!

(continues on next page)

2.2. Compose Tasks 9

Parade Documentation, Release 0.1.20.3

(continued from previous page)

2017-05-24 16:37:35,636 program_name WARNING [11758] [rdb.py:80]: Detect columns with
→˓object types ['movie_title', 'genres', 'content_rating', 'genres_root'], which is
→˓automatically converted to *VARCHAR(256)*, you can override this by specifying type
→˓hints!
2017-05-24 16:37:38,374 program_name INFO [11758] [rdb.py:105]: Write to movie_data:
→˓rows #0-#10000

When the execution is done, you can check your newly loaded data in the databased labeled by rdb-conn.

> select count(1) from movie_data;
+----------+
| count(1) |
+----------+
| 4543 |
+----------+
1 row in set (0.01 sec)

Relexed and comfortable, right? However, when you check the generated table, you may find something unsatisfactory.

> show create table movie_data;

CREATE TABLE `movie_data` (
`movie_title` varchar(256) DEFAULT NULL,
`genres` varchar(256) DEFAULT NULL,
`title_year` double DEFAULT NULL,
`content_rating` varchar(256) DEFAULT NULL,
`budget` double DEFAULT NULL,
`num_voted_users` bigint(20) DEFAULT NULL,
`imdb_score` double DEFAULT NULL,
`genres_root` varchar(256) DEFAULT NULL

) ENGINE=InnoDB DEFAULT CHARSET=utf8

1 row in set (0.00 sec)

The columns title_year and budget should be of type Integer in original dataset, but stored as Double in the target table.
This is because both of them has NAN value in the raw dataset. Although we’ve filtered NAN-value records out, Pandas
automatically convert Integer columns with NAN-value into float. Check the outputs of execution above, Parade has
warned on this issue. Moreover, all String-typed columns have been converted into VARCHAR(256) indistinctively.

To address this issue, we further customize the datatype of ETL target with @property function target_typehints.
Parade provides a compact set of basic datatypes. We simply return a column-name to Parade-datatype dict in the
function.

We can further customize the indexes on the ETL target with @property function target_indexes. The rdb connection
driver can recognize this attribute and build indexes after writing the result. The final task source is as follows:

-*- coding:utf-8 -*-

from parade.core.task import SingleSourceETLTask
from parade.type import stdtypes
import pandas as pd

class MovieData(SingleSourceETLTask):

@property
def target_conn(self):

(continues on next page)

10 Chapter 2. Tutorial

Parade Documentation, Release 0.1.20.3

(continued from previous page)

"""
the target connection to write the result
:return:
"""
return 'stat'

@property
def target_typehints(self):

"""
a dict of column_name => datatype, to customize the data type before write

→˓target
:return:
"""
return {

'movie_title': stdtypes.StringType(128),
'genres': stdtypes.StringType(128),
'genres_root': stdtypes.StringType(32),
'content_rating': stdtypes.StringType(16),
'title_year': stdtypes.IntegerType(),
'budget': stdtypes.IntegerType(20),

}

@property
def target_indexes(self):

"""
a string or a string-tuple or a string/string-tuple list to specify the

→˓indexes on the target table
:return:
"""
return ['movie_title', ('title_year', 'genres')]

def execute_internal(self, context, **kwargs):
"""
the internal execution process to be implemented
:param context:
:param kwargs:
:return:
"""
df = pd.read_csv('https://raw.githubusercontent.com/bailaohe/parade/master/

→˓assets/movie_metadata.csv')

Process projection on the dataset to get our interested attributes
df = df[['movie_title', 'genres', 'title_year', 'content_rating', 'budget',

→˓'num_voted_users', 'imdb_score']]

Filter out records with *NAN* title_year and budget
df = df[pd.notnull(df['title_year'])]
df = df[df['budget'] > 0]

Extract the genres ROOT
df['genres_root'] = df['genres'].apply(lambda g: g.split('|')[0])

return df

Re-execute the task and check your database again:

2.2. Compose Tasks 11

Parade Documentation, Release 0.1.20.3

mysql> show create table movie_data;

CREATE TABLE `movie_data` (
`movie_title` varchar(128) DEFAULT NULL,
`genres` varchar(128) DEFAULT NULL,
`title_year` int(11) DEFAULT NULL,
`content_rating` varchar(16) DEFAULT NULL,
`budget` bigint(20) DEFAULT NULL,
`num_voted_users` bigint(20) DEFAULT NULL,
`imdb_score` double DEFAULT NULL,
`genres_root` varchar(32) DEFAULT NULL,
KEY `idx_movie_title` (`movie_title`),
KEY `idx_title_year_genres` (`title_year`,`genres`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8

1 row in set (0.02 sec)

2.2.3 Compose another Analysis task

Let’s say that we need compose another task based on the ETL result of the first one. The task is used to analysis some
distribution stats, such as top-rated (imdb_score >= 7) count, excellent rate (#top-rated / #total), and average budget
among the movie genres.

Since the dataset is already placed in a single database, we can process above analysis with one SQL statement:

SELECT
genres_root,
COUNT(1) DIV 1 total_count,
SUM(IF(imdb_score >= 7, 1, 0)) DIV 1 excellence_count,
SUM(IF(imdb_score >= 7, 1, 0)) / count(1) excellence_rate,
AVG(budget) DIV 1 avg_budget

FROM movie_data
GROUP BY genres_root
ORDER BY excellence_count DESC;

Parade provides another sub-task-type of etl, i.e., setl standing for single source ETL, to facilitate the implementation
of ETL tasks can be accomplished by single query on source connection.

Run following command to generate the skeleton of this task:

> parade task create genres_distrib -t setl

Then we edit the source example/task/genres_distrib.py to contains following stuff:

-*- coding:utf-8 -*-
from parade.core.task import SqlETLTask
from parade.type import stdtypes

class GenresDistrib(SqlETLTask):

@property
def target_conn(self):

"""
the target connection to write the result
:return:

(continues on next page)

12 Chapter 2. Tutorial

Parade Documentation, Release 0.1.20.3

(continued from previous page)

"""
return 'stat'

@property
def target_typehints(self):

"""
a dict of column_name => datatype, to customize the data type before write

→˓target
:return:
"""
return {

'genres_root': stdtypes.StringType(32),
'avg_budget': stdtypes.IntegerType(20),
'total_count': stdtypes.IntegerType(),
'excellence_count': stdtypes.IntegerType(),

}

@property
def source_conn(self):

"""
the source connection to write the result
:return:
"""
return 'stat'

@property
def source(self):

"""
the single source (table/query) to process etl
:return:
"""
return """
SELECT
genres_root,
COUNT(1) DIV 1 total_count,
SUM(IF(imdb_score >= 7, 1, 0)) DIV 1 excellence_count,
SUM(IF(imdb_score >= 7, 1, 0)) / count(1) excellence_rate,
AVG(budget) DIV 1 avg_budget

FROM movie_data
GROUP BY genres_root
ORDER BY excellence_count DESC;
"""

@property
def deps(self):

"""
a string-array to specified the dependant tasks has to be completed before

→˓this one
:return:
"""
return ['movie_data']

You can see we just return the sql string from the @property function source. Along with that, the source specifies the
source & target connection and typehints.

Finally, we add another @property function deps to customize the dependance of this task with an string-array. This
task only requires a single task, i.e., movie_data.

2.2. Compose Tasks 13

Parade Documentation, Release 0.1.20.3

After executing this task, we can check the analysis result in database:

> select * from genres_distrib;
+-------------+-------------+------------------+-----------------+------------+
| genres_root | total_count | excellence_count | excellence_rate | avg_budget |
+-------------+-------------+------------------+-----------------+------------+
| Drama | 840 | 405 | 0.4821 | 24908465 |
| Action | 1098 | 263 | 0.2395 | 64647649 |
| Comedy | 1169 | 261 | 0.2233 | 31601107 |
| Adventure | 433 | 165 | 0.3811 | 64342879 |
| Biography | 233 | 161 | 0.691 | 24308608 |
| Crime | 298 | 145 | 0.4866 | 36998053 |
| Documentary | 67 | 50 | 0.7463 | 5831930 |
| Horror | 215 | 28 | 0.1302 | 11349153 |
| Animation | 51 | 25 | 0.4902 | 50958431 |
| Fantasy | 47 | 13 | 0.2766 | 14440319 |
| Mystery | 32 | 13 | 0.4063 | 26230156 |
| Western | 11 | 7 | 0.6364 | 3203181 |
| Sci-Fi | 13 | 4 | 0.3077 | 17182307 |
| Thriller | 16 | 3 | 0.1875 | 2959812 |
| Family | 11 | 3 | 0.2727 | 6010909 |
| Romance | 6 | 1 | 0.1667 | 20558833 |
| Film-Noir | 1 | 1 | 1 | 1696377 |
| Musical | 2 | 1 | 0.5 | 3189500 |
+-------------+-------------+------------------+-----------------+------------+
18 rows in set (0.01 sec)

From the result we can find that the genres with the most top-rates is Drama, but its average budget is much less than
Action and Adventure.

2.2.4 Compose the third Archive task

Sometimes we may want to archive our data into some targets other than relational database, such as Elasticsearch.
Parade’s plugin-based architecture makes incorporation with contributed components, such as third-party connections,
very easy. Let’s try to archive the output of task movie_data into a elasticsearch server.

As mentioned above, you can implement your own connection driver in a python class (overriding the base Connection
class) and place it into the package path contrib/connection in your workspace. Parade then can load your connection
before task execution. We have provided some in-hand connections in our github repo parade-contrib. You can
download the elasticsearch connection driver into your workspace by simply typing:

> parade feature install connection elastic

Now you will find a elastic.py file in example/contrib/connection. This connection require some configuration about
the target elasticsearch server in example-default-1.0.yml as follows, which we have provided before:

elastic-conn:
driver: elastic
protocol: http
host: 127.0.0.1
port: 9200
user: elastic
password: changeme
db: example
uri: http://elastic:changeme@127.0.0.1:9200/

14 Chapter 2. Tutorial

https://www.elastic.co/products/elasticsearch
https://github.com/bailaohe/parade-contrib

Parade Documentation, Release 0.1.20.3

The following things are easy. We generate another setl-type task, archive_data, with dependence on movie_data. The
task takes elastic-conn as target_conn, and return following sql statement from source:

SELECT
movie_title, genres,
title_year, content_rating,
budget, num_voted_users, imdb_score

FROM movie_data

After execution, we can find the data is already stored in our elasticsearch:

> curl -XGET 'localhost:9200/example/_search' | json_pp

{
"timed_out" : false,
"hits" : {

"max_score" : 1,
"total" : 4543,
"hits" : [

{
"_score" : 1,
"_id" : "AVw9cIPdG8Vt64Emu4r_",
"_source" : {

"budget" : 250000000,
"genres" : "Adventure|Family|Fantasy|Mystery",
"imdb_score" : 7.5,
"movie_title" : "Harry Potter and the Half-Blood Prince ",
"num_voted_users" : 321795,
"title_year" : 2009,
"content_rating" : "PG"

},
"_type" : "archive_data",
"_index" : "example"

},
...

]
},
"took" : 14,
"_shards" : {

"successful" : 5,
"total" : 5,
"failed" : 0

}
}

2.3 Build the DAG-workflow

Till now, we only execute every composed task one by one. You may find that we have specify the dependences
between them in the task source, which make these tasks constitute a DAG-workflow, but Parade seems not recognitive
to these attributes.

In fact, Parade can handle DAG very well in executing task batch. We can provide multiple tasks as arguments to
sub-command task exec, Parade will build a DAG-workflow based on their inter-dependences and execute them in
correct order.

2.3. Build the DAG-workflow 15

Parade Documentation, Release 0.1.20.3

> parade exec movie_data genres_distrib archive_data

2017-05-25 11:19:54,213 program_name DEBUG [5196] [exec.py:20]: prepare to execute
→˓tasks ['movie_data', 'genres_distrib', 'archive_data']
2017-05-25 11:19:54,216 program_name DEBUG [5196] [engine.py:127]: pick up task
→˓[genres_distrib] ...
2017-05-25 11:19:54,216 program_name DEBUG [5196] [engine.py:127]: pick up task
→˓[movie_data] ...
2017-05-25 11:19:54,216 program_name DEBUG [5196] [engine.py:147]: task movie_data
→˓start executing ...
2017-05-25 11:19:55,220 program_name DEBUG [5196] [engine.py:127]: pick up task
→˓[archive_data] ...
2017-05-25 11:19:56,224 program_name DEBUG [5196] [engine.py:127]: pick up task
→˓[genres_distrib] ...
2017-05-25 11:20:01,565 program_name DEBUG [5196] [engine.py:149]: task movie_data
→˓Executed successfully
2017-05-25 11:20:01,565 program_name DEBUG [5196] [engine.py:127]: pick up task
→˓[genres_distrib] ...
2017-05-25 11:20:01,566 program_name DEBUG [5196] [engine.py:144]: all dependant
→˓task(s) of task genres_distrib is done
2017-05-25 11:20:01,566 program_name DEBUG [5196] [engine.py:147]: task genres_
→˓distrib start executing ...
2017-05-25 11:20:02,249 program_name DEBUG [5196] [engine.py:127]: pick up task
→˓[archive_data] ...
2017-05-25 11:20:02,249 program_name DEBUG [5196] [engine.py:144]: all dependant
→˓task(s) of task archive_data is done
2017-05-25 11:20:02,249 program_name DEBUG [5196] [engine.py:147]: task archive_data
→˓start executing ...
2017-05-25 11:20:02,370 program_name DEBUG [5196] [engine.py:149]: task archive_data
→˓Executed successfully
2017-05-25 11:20:02,779 program_name DEBUG [5196] [engine.py:149]: task genres_
→˓distrib Executed successfully

As you have seen, Parade take dependences into consideration by default when executing multiple tasks. If you do not
provide any task arguments, Parade will search and execute all tasks in current workspace as a single DAG. If you just
want to execute multiple tasks rather than DAG, use option –nodep when running task exec.

At present, Parade can only handle DAG execution in single process in single host, which make us think Parade should
support scheduling DAG execution to some third-party scheduler. In this example, we indicate that how we can submit
our tasks as a workflow into LinkedIn’s Azkaban Scheduler. Install this dagstore driver at first:

> parade feature install flowstore azkaban

Then add following azkaban configuration into example-default-1.0.yml:

flowstore:
driver: 'azkaban'
host: "http://127.0.0.1:8081"
username: azkaban
password: azkaban
project: TestProject
notifymail: "yourmail@yourdomain.com"
cmd: "parade exec {task}"

Now we can use following command to submit the workflow to azkaban:

You’ll find the DAG is already located in your azkaban server. And now you can schedule the execution with azkaban
server.

16 Chapter 2. Tutorial

Parade Documentation, Release 0.1.20.3

2.3. Build the DAG-workflow 17

Parade Documentation, Release 0.1.20.3

18 Chapter 2. Tutorial

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

19

	Installation
	Requirements
	Install with pip

	Tutorial
	Initialize Workspace
	Compose Tasks
	Build the DAG-workflow

	Indices and tables

